TD No. 1 — Introduction to Advanced Databases

Exercise 1 — Mark True or False (T/F) for each statement — Briefly justify your answer

#	Statement	T/F	Justification
1	The schema changes frequently, the instance is stable.		
2	A primary key can be null.		
3	DDL deals with structure, DML with data.		
4	ACID concerns transaction reliability.		
5	The E/R model is identical to the relational model.		
6	In ANSI/SPARC, the external level refers to user views.		
7	MVCC increases the parallelism of reads.		
8	NoSQL databases always replace RDBMSs.		
9	A foreign key must reference an existing primary key.		
10	An index changes the result of a SELECT query.		

Exercise 2 — Match each Number to its Corresponding Definition

No.	Abbreviation / Concept	Order	Definition
1	DDL	М	Table of the relational model (set of tuples and attributes).
2	DML	В	User view (representations adapted to needs).
3	DCL	Р	Descriptive property of an entity/association.
4	TCL	G	Software managing storage, integrity, access, and optimization (DBMS).
5	Referential integrity	С	Manipulation queries: SELECT, INSERT, UPDATE, DELETE.
6	External level (ANSI/SPARC)	J	Structure definition: CREATE, ALTER, DROP.
7	Candidate key	D	Schema / Instance: stable structural plan vs. data at a given time.
8	PK (Primary Key)	Н	Conceptual link between entities (Entity–Relationship model).
9	FK (Foreign Key)	Α	Uniqueness constraint identifying each tuple.
10	Schema / Instance	N	Transactional control: COMMIT, ROLLBACK, SAVEPOINT.
11	ACID	Е	Access control commands: GRANT, REVOKE.
12	Entity	0	Reference required to an existing key in another table.
13	Attribute	L	Set of columns that can serve as a primary key.
14	Relation	F	Transaction reliability properties (ACID).
15	Association (Entity– Relationship model)	I	Constraint pointing to an existing key in another table.
16	DBMS	K	Object or concept from the real world being modeled.

Exercise 3 — Data Integrity

We consider the following fictitious schema for a database named "Bank Account Management":

AGENCY(CODE, ADDRESS)
ACCOUNT(CODE, NUMBER, CLIENT, ADDRESS)
TRANSACTION(CODE, NUMBER, TIMESTAMP, OPERATION, AMOUNT, BRANCH_BALANCE, CLIENT_BALANCE)

Sample Instance (for context):

AGENCY

CODE	CODE ADDRESS		
2101	CENTRE VILLE SKIKDA		
2512	CONSTANTINE CENTRE		

ACCOUNT

CODE	NUMBER	CLIENT	ADDRESS
2512	2426136-90	CHIEKH NASS MLAH	4 RUE SAINT JEAN, 25000 CONSTANTINE
2101	2425368-11	TAHAR OULD TAHAR	2 RUE ALLÉES, 21000 SKIKDA
2512	5252636-20	ALI BEN ALI	ROUTE BAB EL OUED No 5, 25200 BELVUE

TRANSACTION

CODE	NUMBER	TIMESTAMP	OPERATION	AMOUNT	BRANCH_BALANCE	CLIENT_BALANCE
2101	2426136-90	SYS_TS	DEPOSIT	15000.00	?	?
2101	2425368-11	SYS_TS	DEPOSIT	10000.00	?	?
2512	2426136-90	SYS_TS	WITHDRAWAL	5000.00	?	?
2101	5252636-20	SYS_TS	DEPOSIT	12000.00	?	?
2512	2426136-90	SYS_TS	WITHDRAWAL	12000.00	?	?
2512	5252636-20	SYS_TS	DEPOSIT	12000.00	?	?

(TIMESTAMP takes the system timestamp value.)

We want to **design this database** while ensuring **data integrity** through appropriate structural constraints.

1) Domain Constraints (DOMAIN)

Propose domain types (or equivalent) for the following:

Symbol	Specification		
DCODE	Agency code format AABB, with AA \in [0148] and BB \in [0199]. Include pattern check, NOT NULL if		
	relevant, and optional collation.		
DTEXT	Alphanumeric strings (≈ 60 characters max) for CLIENT and ADDRESS. Specify length, UPPER/TRIM		
	if needed, NOT NULL if relevant.		
DNUMBER	Account number format CCCCCC-CC (only digits). Define pattern/length and NOT NULL if		
	relevant.		
DMONETARY	Numeric type for amounts/balances. Specify range, CHECK (value ≥ 0), NOT NULL if relevant.		
DOPERATION	Controlled values: 'DEPOSIT' or 'WITHDRAWAL'. Specify enumeration, case sensitivity, NOT NULL.		
DTIMESTAMP	System timestamp type (+ appropriate DEFAULT). Specify NOT NULL if relevant, and prohibit		
	future dates.		

2) Structural Constraints (Schema)

Declare and justify PK, FK, UNIQUE, NOT NULL, CHECK, DEFAULT and ON DELETE/ON UPDATE actions.

AGENCY

- o CODE: PK, type DCODE.
- ADDRESS: DTEXT, NOT NULL.

ACCOUNT

- o PK = (CODE, NUMBER) with CODE: DCODE, NUMBER: DNUMBER.
- CODE: FK → AGENCY(CODE); specify reference action and justify (choice between CASCADE / RESTRICT / SET NULL).
- CLIENT, ADDRESS: DTEXT, NOT NULL.
- o Optional UNIQUE(NUMBER) if account numbers are globally unique justify.

TRANSACTION

- o FK (CODE, NUMBER) → ACCOUNT(CODE, NUMBER) with reference actions and justification.
- o CODE: FK → AGENCY(CODE) for agency consistency.
- o TIMESTAMP: DTIMESTAMP with system DEFAULT.
- o OPERATION: DOPERATION with CHECK on valid values.
- AMOUNT, BRANCH BALANCE, CLIENT BALANCE: DMONETARY, NOT NULL, CHECK (≥ 0).

3) Tuple-Level CHECK Constraints — Table TRANSACTION

Specify at least two CHECK constraints:

- 1. Date validation: prohibit future timestamps (and/or invalid formats).
- 2. Amount/Type consistency: if OPERATION = 'WITHDRAWAL' then AMOUNT > 0.

Explain why a CHECK on a nullable column must tolerate NULL (e.g., VALUE IS NULL OR condition) — because SQL treats NULL as "unknown", so the constraint must not reject tuples when the tested value is missing.

4) Non-Structural Constraints (Business Logic)

List 3–5 business rules not purely structural and explain how to enforce them (using **triggers**, **secure views**, or **stored procedures**).

Examples include:

- Daily withdrawal limit per account.
- Account balance must never be negative after a withdrawal.
- Agency consistency: TRANSACTION.CODE must equal the CODE of the referenced account.
- Detection of duplicate transactions at the same instant (same account + identical rounded timestamp).